EGF induces macropinocytosis and SNX1-modulated recycling of E-cadherin.

نویسندگان

  • David M Bryant
  • Markus C Kerr
  • Luke A Hammond
  • Shannon R Joseph
  • Keith E Mostov
  • Rohan D Teasdale
  • Jennifer L Stow
چکیده

In epithelia, junction proteins are endocytosed for modulation of cell-cell adhesion and cell polarity. In response to growth factors, the cell-cell adhesion protein E-cadherin is internalized from the cell surface with degradation or recycling as potential fates. However, the cellular machinery involved in cadherin internalization and recycling remains controversial. Here we investigated EGF-induced E-cadherin internalization. EGF stimulation of MCF-7 cells resulted in Rac1-modulated macropinocytosis of the E-cadherin-catenin complex into endosomal compartments that colocalized with EEA1 and the sorting nexin, SNX1. Depletion of cellular SNX1 levels by siRNA resulted in increased intracellular accumulation and turnover of E-cadherin internalized from the cell surface in response to EGF. Moreover, SNX1 was also required for efficient recycling of internalized E-cadherin and re-establishment of epithelial adhesion. Together, these findings demonstrate a role for SNX1 in retrieval of E-cadherin from a degradative endosomal pathway and in membrane trafficking pathways that regulate E-cadherin recycling.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

EGF‑stimulated AKT activation is mediated by EGFR recycling via an early endocytic pathway in a gefitinib‑resistant human lung cancer cell line.

The receptor tyrosine kinase epidermal growth factor receptor (EGFR) and its ligand epidermal growth factor (EGF) are known to play important roles in malignant tumor cells, and the EGFR signaling pathway is one of the most important targets in various tumors, including non-small cell lung cancer (NSCLC). We reported recently that an aberration in certain steps of EGF-stimulated phosphorylated ...

متن کامل

SNX5 is essential for efficient macropinocytosis and antigen processing in primary macrophages

Macropinocytosis mediates the bulk endocytosis of solute molecules, nutrients and antigens. As this endocytic pathway is considered important in functions associated with immune responses, the molecular mechanisms regulating this pathway in immune cells is of particular significance. However, the regulators of macropinocytosis in primary cells remain poorly defined. Members of the sorting nexin...

متن کامل

Differential Downregulation of E-Cadherin and Desmoglein by Epidermal Growth Factor

Modulation of cell : cell junctions is a key event in cutaneous wound repair. In this study we report that activation of the epidermal growth factor (EGF) receptor disrupts cell : cell adhesion, but with different kinetics and fates for the desmosomal cadherin desmoglein and for E-cadherin. Downregulation of desmoglein preceded that of E-cadherin in vivo and in an EGF-stimulated in vitro wound ...

متن کامل

Reggies/flotillins regulate E-cadherin–mediated cell contact formation by affecting EGFR trafficking

The reggie/flotillin proteins are implicated in membrane trafficking and, together with the cellular prion protein (PrP), in the recruitment of E-cadherin to cell contact sites. Here, we demonstrate that reggies, as well as PrP down-regulation, in epithelial A431 cells cause overlapping processes and abnormal formation of adherens junctions (AJs). This defect in cell adhesion results from reggi...

متن کامل

Hyperuricemia Induces Wnt5a/Ror2 Gene Expression, Epithelial–Mesenchymal Transition, and Kidney Tubular Injury in Mice

Background: Hyperuricemia contributes to kidney injury, characterized by tubular injury with epithelial–mesenchymal transition (EMT). Wnt5a/Ror2 signaling drives EMT in many kidney pathologies. This study sought to evaluate the involvement of Wnt5a/Ror2 in hyperuricemia-induced EMT in kidney tubular injury.Methods: A hyperuricemia model was performed in male Swiss background mice (3 months old,...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Journal of cell science

دوره 120 Pt 10  شماره 

صفحات  -

تاریخ انتشار 2007